A sharp Sobolev-Strichartz estimate for the wave equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximizers for the Strichartz Inequalities and the Sobolev-strichartz Inequalities for the Schrödinger Equation

In this paper, we first show that there exists a maximizer for the non-endpoint Strichartz inequalities for the Schrödinger equation in all dimensions based on the recent linear profile decomposition results. We then present a new proof of the linear profile decomposition for the Schröindger equation with initial data in the homogeneous Sobolev space; as a consequence, there exists a maximizer ...

متن کامل

An Inverse Theorem for the Bilinear L Strichartz Estimate for the Wave Equation

A standard bilinear L Strichartz estimate for the wave equation, which underlies the theory of X spaces of Bourgain and Klainerman-Machedon, asserts (roughly speaking) that if two finite-energy solutions to the wave equation are supported in transverse regions of the light cone in frequency space, then their product lies in spacetime L with a quantitative bound. In this paper we consider the in...

متن کامل

Strichartz Estimates for Wave Equations with Coefficients of Sobolev Regularity

Wave packet techniques provide an effective method for proving Strichartz estimates on solutions to wave equations whose coefficients are not smooth. We use such methods to show that the existing results for C1,1 and C1,α coefficients can be improved when the coefficients of the wave operator lie in a Sobolev space of sufficiently high order.

متن کامل

A Sharp Inequality for the Strichartz Norm

Let u : R × R → C be the solution of the linear Schrödinger equation

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Research Announcements in Mathematical Sciences

سال: 2015

ISSN: 1935-9179

DOI: 10.3934/era.2015.22.46